例如:"lncRNA", "apoptosis", "WRKY"

Exploring new genetic variants within COL5A1 intron 4-exon 5 region and TGF-β family with risk of anterior cruciate ligament ruptures.

J Orthop Res. 2020 Aug;38(8):1856-1865. doi:10.1002/jor.24585. Epub 2020 Jan 13
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Variants within genes encoding structural and regulatory elements of ligaments have been associated with musculoskeletal soft tissue injury risk. The role of intron 4-exon 5 variants within the α1 chain of type V collagen (COL5A1) gene and genes of the transforming growth factor-β (TGF-β) family, TGFBR3 and TGFBI, was investigated on the risk of anterior cruciate ligament (ACL) ruptures. A case-control genetic association study was performed on 210 control (CON) and 249 participants with surgically diagnosed ruptures (ACL), of which 147 reported a noncontact mechanism of injury (NON). Whole-exome sequencing data were used to prioritize variants of potential functional relevance. Genotyping for COL5A1 (rs3922912 G>A, rs4841926 C>T, and rs3124299 C>T), TGFBR3 (rs1805113 G>A and rs1805117 T>C), and TGFBI (rs1442 G>C) was performed using Taqman SNP genotyping assays. Significant overrepresentation of the G allele of TGFBR3 rs1805113 was observed in CON vs ACL (P = .014) and NON groups (P = .021). Similar results were obtained in a female with the G allele (CON vs ACL: P = .029; CON vs NON: P = .016). The TGFBI rs1442 CC genotype was overrepresented in the female ACL vs CON (P = .013). Associations of inferred allele combinations were observed in line with the above results. COL5A1 intron 4-exon 5 genomic interval was not associated with the risk of ACL ruptures. Instead, this novel study is the first to use this approach to identify variants within the TGF-β signaling pathway to be implicated in the risk of ACL ruptures. A genetic susceptibility interval was identified to be explored in the context of extracellular matrix remodeling.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读