例如:"lncRNA", "apoptosis", "WRKY"

Nicotinamide N-methyltransferase expression in SH-SY5Y human neuroblastoma cells decreases oxidative stress.

J Biochem Mol Toxicol. 2020 Mar;34(3):e22439. doi:10.1002/jbt.22439. Epub 2020 Jan 07
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Nicotinamide N-methyltransferase (NNMT) plays a central role in cellular metabolism, regulating pathways including epigenetic regulation, cell signalling, and energy production. Our previous studies have shown that the expression of NNMT in the human neuroblastoma cell line SH-SY5Y increased complex I activity and subsequent ATP synthesis. This increase in ATP synthesis was lower than the increase in complex I activity, suggesting uncoupling of the mitochondrial respiratory chain. We, therefore, hypothesised that pathways that reduce oxidative stress are also increased in NNMT-expressing SH-Y5Y cells. The expression of uncoupling protein-2 messenger RNA and protein were significantly increased in NNMT-expressing cells (57% ± 5.2% and 20.1% ± 1.5%, respectively; P = .001 for both). Total GSH (22 ± 0.3 vs 35.6 ± 1.1 nmol/mg protein), free GSH (21.9 ± 0.2 vs 33.5 ± 1 nmol/mg protein), and GSSG (0.6 ± 0.02 vs 1 ± 0.05 nmol/mg protein; P = .001 for all) concentrations were significantly increased in NNMT-expressing cells, whereas the GSH:GSSG ratio was decreased (39.4 ± 1.8 vs 32.3 ± 2.5; P = .02). Finally, reactive oxygen species content was decreased in NNMT-expressing cells (0.3 ± 0.08 vs 0.12 ± 0.03; P = .039), as was the concentration of 8-isoprostane F2α (200 ± 11.5 vs 45 ± 2.6 pg/mg protein; P = .0012). Taken together, these results suggest that NNMT expression reduced generation and subsequent lipid peroxidation by uncoupling the mitochondrial membrane potential and increasing GSH buffering capacity, most likely to compensate for increased complex I activity and ATP production.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读