例如:"lncRNA", "apoptosis", "WRKY"

Targeting DCN1-UBC12 Protein-Protein Interaction for Regulation of Neddylation Pathway.

Adv. Exp. Med. Biol.2020;1217:349-362. doi:10.1007/978-981-15-1025-0_20
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Protein neddylation is one type of posttranslational modifications that regulates the activity of the substrate proteins. Neddylation modification is catalyzed by NEDD8-activating enzyme (NAE, E1), NEDD8-conjugating enzyme (E2), and NEDD8 ligase (E3) to attach NEDD8, an ubiquitin-like molecule, to a lysine residue of a substrate protein. The best known neddylation substrates are cullin family members, which are scaffold components of cullin-RING ligases (CRLs), and cullin neddylation is required for activation of CRLs. In mammalian cells, there are one E1, two E2s (UBC12/UBE2M and UBE2F), and over a dozen E3s. MLN4924, the first-in-class small-molecule inhibitor of NAE, blocks the entire neddylation modification to inactivate activity of all CRLs. MLN4924 is currently in the Phase I/II clinical trials for anticancer application.In the last few years, targeting protein-protein interactions of the neddylation complexes has been pursued as a potential strategy to selectively inhibit the activity of individual CRL. Analysis of the co-crystal structures of DCN1, a co-E3 for neddylation, and its binding partners UBC12 (a neddylation E2) suggested that it may be amenable for the design of potent, small-molecule inhibitors. In this chapter, we will review the discovery of small-molecule inhibitors that block the interactions of DCN1 with UBC12 (hereafter called DCN1 inhibitors) from a number of laboratories, including ours, leading to selective inactivation of CRL-1 and/or CRL-3. We will also discuss potential therapeutic applications of these small-molecule inhibitors.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读