例如:"lncRNA", "apoptosis", "WRKY"

MicroRNA‑432 inhibits the aggressiveness of glioblastoma multiforme by directly targeting IGF‑1R.

Int J Mol Med. 2020 Feb;45(2):597-606. doi:10.3892/ijmm.2019.4429. Epub 2019 Dec 16
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


MicroRNA‑432 (miR‑432) has been studied in multiple tumors, but the expression status, biological functions and the mechanism of action of miR‑432 in glioblastoma multiforme (GBM) are yet to be elucidated. In the present study, miR‑432 expression in GBM was determined and its clinical significance was evaluated among patients with GBM. The effects on the malignancy of GBM in vitro and in vivo were examined in detail and the interactions between miR‑432 and insulin‑like growth factor 1 receptor (IGF‑1R) mRNA were then explored. miR‑432 expression in GBM tissue samples and cell lines was measured by reverse transcription‑quantitative (RT‑q)PCR. GBM cell proliferation, apoptosis, migration and invasion in vitro and tumor growth in vivo were evaluated by a Cell Counting Kit‑8 assay, flow‑cytometric analysis, Transwell migration and invasion assays, and a tumor xenograft experiment, respectively. Bioinformatic analysis followed by a luciferase reporter assay, RT‑qPCR and western blotting was applied to demonstrate that IGF‑1R is a direct target gene of miR‑432 in GBM cells. It was found that miR‑432 is downregulated in GBM tumors and cell lines. miR‑432 under expression obviously correlated with the Karnofsky Performance Status score and shorter overall survival among patients with GBM. Exogenous miR‑432 expression significantly reduced proliferation and induced apoptosis of GBM cells. In addition, miR‑432 overexpression impaired the migratory and invasive abilities of GBM cells in vitro and decreased their tumor growth in vivo. Furthermore, IGF‑1R was validated as a direct target gene of miR‑432 in GBM cells. IGF‑1R knockdown imitated the tumor‑suppressive actions of miR‑432 overexpression in GBM cells. Rescue experiments proved IGF‑1R downregulation to be essential for the effects of miR‑432 on GBM cells. The results of the present study revealed a tumor‑suppressive role of the miR‑432‑IGF‑1R axis in GBM cells and this axis may have implications for GBM therapy.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读