例如:"lncRNA", "apoptosis", "WRKY"

IGFBP7 acts as a negative regulator of RANKL-induced osteoclastogenesis and oestrogen deficiency-induced bone loss.

Cell Prolif. 2020 Feb;53(2):e12752. doi:10.1111/cpr.12752. Epub 2019 Dec 30
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


OBJECTIVES:Insulin-like growth factor-binding protein 7 (IGFBP7) is a low-affinity insulin growth factor (IGF) binder that may play an important role in bone metabolism. We previously reported that IGFBP7 enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) via the Wnt/β-catenin signalling pathway. In this study, we tried to reveal its function in osteoclast differentiation and osteoporosis. METHODS:We used both in vitro and in vivo studies to investigate the effects of IGFBP7 on RANKL-induced osteoclastogenesis and osteoporosis, together with the underlying molecular mechanisms of these processes. RESULTS:We show that IGFBP7 inhibited receptor activation of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis, F-actin ring formation and bone resorption, which was confirmed by using recombinant IGFBP7 protein, lentivirus and siRNA. The NF-κB signalling pathway was inhibited during this process. Moreover, in a mouse ovariectomy-induced osteoporosis model, IGFBP7 treatment attenuated osteoporotic bone loss by inhibiting osteoclast activity. CONCLUSIONS:Taken together, these findings show that IGFBP7 suppressed osteoclastogenesis in vitro and in vivo and suggest that IGFBP7 is a negative regulator of osteoclastogenesis and plays a protective role in osteoporosis. These novel insights into IGFBP7 may facilitate the development of potential treatment strategies for oestrogen deficiency-induced osteoporosis and other osteoclast-related disorders.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读