例如:"lncRNA", "apoptosis", "WRKY"

HB-EGF Ameliorates Oxidative Stress-Mediated Uterine Decidualization Damage.

Oxid Med Cell Longev. 2019 Dec 02;2019:6170936. doi:10.1155/2019/6170936. eCollection 2019
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


HB-EGF is essential for uterine decidualization, but its antioxidant function remains largely unclear. Here, we found that HB-EGF promoted the proliferation of stromal cells followed by the accelerated transition of the cell cycle from G1 to S phase and enhanced the expression or activity of Prl8a2, Prl3c1, and ALP which were well-established markers for uterine stromal cell differentiation during decidualization. Under oxidative stress, stromal cell differentiation was impaired, but this impairment was abrogated by rHB-EGF accompanied with the reduced levels of and MDA which were regarded as the biomarkers for oxidative stress, indicating an antioxidant role of HB-EGF. Further analysis revealed that HB-EGF enhanced the activities of antioxidant enzymes SOD, CAT, and GPX, where addition of GPX inhibitor MS attenuated the induction of rHB-EGF on Prl8a2, Prl3c1, and ALP. Meanwhile, HB-EGF rescued the content of GSH and restored the ratio of GSH/GSSG after exposure to H2O2 but did not alter NOX activity. Along with a decline for mitochondrial superoxide, exogenous rHB-EGF improved the damage of oxidative stress on mtDNA copy number, ATP level, mitochondrial membrane potential, and activities of mitochondrial respiratory chain complex I and III whose blockage by ROT and AA led to a failure of rHB-EGF in protecting stromal cell differentiation against injury. Moreover, HB-EGF prevented stromal cell apoptosis by inhibiting Caspase-3 activity and Bax expression and recovering the level of Bcl-2 mRNA. Collectively, HB-EGF might ameliorate oxidative stress-mediated uterine decidualization damage.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读