例如:"lncRNA", "apoptosis", "WRKY"

CD22 and CD72 contribute to the development of scleroderma in a murine model.

J Dermatol Sci. 2020 Jan;97(1):66-76. Epub 2019 Dec 13
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by excessive fibrosis. CD22 and CD72 are B cell-specific cell surface molecules that negatively regulate B cell function. OBJECTIVE:The aim of the present study was to investigate the roles of CD22 and CD72 in a murine scleroderma model. METHODS:The experimental fibrosis model was generated by subcutaneous injection of bleomycin or hypochlorous acid (HOCL) into wild-type (WT), CD22-deficient (CD22-/-), CD72-deficient (CD72-/-) and CD22 and CD72 double-deficient (CD22-/-/CD72-/-) mice. We histologically assessed skin fibrosis and inflammatory cell infiltration. Cytokine and chemokine expression levels were measured by real-time polymerase chain reaction. RESULTS:The severity of fibrosis in the skin and lung was significantly less in CD22-/-, CD72-/-, and CD22-/-/CD72-/- mice than in WT mice in the bleomycin-induced model. In the skin of bleomycin-treated mice, the numbers of CD3+ T cells, CD8+ T cells, and F4/80+ macrophages were significantly lower in CD22-/-, CD72-/-, and CD22-/-/CD72-/- mice than in WT mice. The expression levels of mRNAs for IL-6, TNF-α, TGF-β, CTGF, IL-1β, IL-13, CXCL2, and ICAM-1 were significantly lower in CD22-/-, CD72-/-, and CD22-/-/CD72-/- mice than in WT mice. In the HOCL-induced model, both skin and lung fibrosis were ameliorated in CD22-/-, CD72-/- and CD22-/-/CD72-/- mice compared to WT mice. CONCLUSION:These results indicate that CD22 and CD72 likely play crucial roles in skin and lung fibrosis. Moreover, the inhibition of CD22 and CD72 function has potential as a therapeutic approach to SSc.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读