例如:"lncRNA", "apoptosis", "WRKY"

Functional Expression of the P2X7 ATP Receptor Requires Eros.

J Immunol. 2020 Feb 01;204(3):559-568. Epub 2019 Dec 20
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In response to extracellular ATP, the purinergic receptor P2X7 mediates various biological processes, including phosphatidylserine (PtdSer) exposure, phospholipid scrambling, dye uptake, ion transport, and IL-1β production. A genome-wide CRISPR screen for molecules responsible for ATP-induced PtdSer exposure identified a transmembrane protein, essential for reactive oxygen species (Eros), as a necessary component for P2X7 expression. An Eros-null mouse T cell line lost the ability to expose PtdSer, to scramble phospholipids, and to internalize a dye YO-PRO-1 and Ca2+ ions. Eros-null mutation abolished the ability of an LPS-primed human THP-1 macrophage cell line and mouse bone marrow-derived macrophages to secrete IL-1β in response to ATP. Eros is localized to the endoplasmic reticulum and functions as a chaperone for NADPH oxidase components. Similarly, Eros at the endoplasmic reticulum transiently associated with P2X7 to promote the formation of a stable homotrimeric complex of P2X7. These results indicated that Eros acts as a chaperone not only for NADPH oxidase, but also for P2X7, and contributes to the innate immune reaction.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读