例如:"lncRNA", "apoptosis", "WRKY"

Hypomorphic variants in AK2 reveal the contribution of mitochondrial function to B-cell activation.

J Allergy Clin Immunol. 2020 Jul;146(1):192-202. Epub 2019 Dec 17
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:The gene AK2 encodes the phosphotransferase adenylate kinase 2 (AK2). Human variants in AK2 cause reticular dysgenesis, a severe combined immunodeficiency with agranulocytosis, lymphopenia, and sensorineural deafness that requires hematopoietic stem cell transplantation for survival. OBJECTIVE:We investigated the mechanisms underlying recurrent sinopulmonary infections and hypogammaglobulinemia in 15 patients, ranging from 3 to 34 years of age, from 9 kindreds. Only 2 patients, both of whom had mildly impaired T-cell proliferation, each had a single clinically significant opportunistic infection. METHODS:Patient cells were studied with next-generation DNA sequencing, tandem mass spectrometry, and assays of lymphocyte and mitochondrial function. RESULTS:We identified 2 different homozygous variants in AK2. AK2G100S and AK2A182D permit residual protein expression, enzymatic activity, and normal numbers of neutrophils and lymphocytes. All but 1 patient had intact hearing. The patients' B cells had severely impaired proliferation and in vitro immunoglobulin secretion. With activation, the patients' B cells exhibited defective mitochondrial respiration and impaired regulation of mitochondrial membrane potential and quality. Although activated T cells from the patients with opportunistic infections demonstrated impaired mitochondrial function, the mitochondrial quality in T cells was preserved. Consistent with the capacity of activated T cells to utilize nonmitochondrial metabolism, these findings revealed a less strict cellular dependence of T-cell function on AK2 activity. Chemical inhibition of ATP synthesis in control T and B cells similarly demonstrated the greater dependency of B cells on mitochondrial function. CONCLUSIONS:Our patients demonstrate the in vivo sequelae of the cell-specific requirements for the functions of AK2 and mitochondria, particularly in B-cell activation and antibody production.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读