例如:"lncRNA", "apoptosis", "WRKY"

Knock-down of circular RNA H19 induces human adipose-derived stem cells adipogenic differentiation via a mechanism involving the polypyrimidine tract-binding protein 1.

Exp Cell Res. 2020 Feb 15;387(2):111753. Epub 2019 Dec 12
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


PURPOSE:The metabolic syndrome (MetS) is characterized of a cluster of medical disorders. Altered function of adipose tissue has a significant impact on whole-body metabolism and represents a key driver for MetS. In this study, we aim to explore the function of human circular RNA H19 (hsa_circH19) in human adipose-derived stem cells (hADSCs). METHODS:The blood samples from MetS patients and normal subjects were used to determine the expression level of the hsa_circH19. After knock-down of hsa_circH19 in hADSCs, we measured the expression of adipogenic genes. Oil red O, Nile red staining assay and triglyceride assessment were performed to examine the role of hsa_circH19 in hADSCs differentiation. Then, RNA Pull-down and RIP assays were conducted to explore the related RNA binding protein of hsa_circH19. IF was performed to determine the potential molecular regulatory mechanism. RESULTS:After accounting for confounding factors, high levels of hsa_circH19 remained an independent risk factor for MetS. Furthermore, the knockdown of hsa_circH19 significantly increased the expression of adipogenic genes and the formation of lipid droplets. Bioinformatics analyses revealed that has_circH19 shared multiple binding sites with polypyrimidine tract-binding protein 1 (PTBP1) and their interaction was validated by circRNA pull-down and RIP assays. Mechanistically, depletion of hsa_circH19 triggered translocation of sterol-regulatory element binding proteins (SREBP1) from cytoplasm to nucleus in the presence of PTBP1. CONCLUSION:Our experiments suggest that knockdown of hsa_circH19 promotes hADCSs adipogenic differentiation via targeting of PTBP1. In consequence, the expression of hsa_circH19 might correlated to lipid metabolism in adipose tissue from MetS.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读