例如:"lncRNA", "apoptosis", "WRKY"

Generation of two isogenic knockout PKD2 iPS cell lines, IRFMNi003-A-1 and IRFMNi003-A-2, using CRISPR/Cas9 technology.

Stem Cell Res. 2020 Jan;42:101667. Epub 2019 Nov 29
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent inherited renal disease, characterized by multiple cysts that can lead to kidney failure resulting in end-stage renal disease. ADPKD is mainly caused by mutations in either the PKD1 and PKD2 genes, encoding for polycystin-1 and polycystin-2, respectively. In order to clarify the disease mechanisms, here we describe the generation of two isogenic induced pluripotent stem cell (iPSC) lines in which the PKD2 gene was deleted using CRISPR/Cas9 technology. The PKD2-/- iPSCs expressed the main pluripotency markers, were able to differentiate into the three germ layers and had a normal karyotype.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读