例如:"lncRNA", "apoptosis", "WRKY"

Kindlin-2 Inhibits the Hippo Signaling Pathway by Promoting Degradation of MOB1.

Cell Rep. 2019 Dec 10;29(11):3664-3677.e5
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The Hippo signaling pathway plays a key role in development and cancer progression. However, molecules that intrinsically inhibit this pathway are less well known. Here, we report that the focal adhesion molecule Kindlin-2 inhibits Hippo signaling by interacting with and degrading MOB1 and promoting the interaction between MOB1 and the E3 ligase praja2. Kindlin-2 thus inhibits the phosphorylation of LATS1 and YAP and promotes YAP translocation into the nucleus, where it activates downstream Hippo target gene transcription. Kindlin-2 depletion activates Hippo/YAP signaling and alleviates renal fibrosis in Kindlin-2 knockout mice with unilateral ureteral occlusion (UUO). Moreover, Kindlin-2 levels are negatively correlated with MOB1 and phosphorylated (p) YAP in samples from patients with renal fibrosis. Altogether, these results demonstrate that Kindlin-2 inhibits Hippo signaling through degradation of MOB1. A specific long-lasting siRNA against Kindlin-2 effectively alleviated UUO-induced renal fibrosis and could be a potential therapy for renal fibrosis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读