[No authors listed]
We report that recessive inheritance of a post-GPI attachment to proteins 2 (PGAP2) gene variant results in the hyperphosphatasia with neurologic deficit (HPMRS) phenotype described by Mabry et al., in 1970. HPMRS, or Mabry syndrome, is now known to be one of 21 inherited glycosylphosphatidylinositol (GPI) deficiencies (IGDs), or GPI biosynthesis defects (GPIBDs). Bi-allelic mutations in at least six genes result in HPMRS phenotypes. Disruption of four phosphatidylinositol glycan (PIG) biosynthesis genes, PIGV, PIGO, PIGW and PIGY, expressed in the endoplasmic reticulum, result in HPMRS 1, 2, 5 and 6; disruption of the PGAP2 and PGAP3 genes, necessary for stabilizing the association of GPI anchored proteins (AP) with the Golgi membrane, result in HPMRS 3 and 4. We used exome sequencing to identify a novel homozygous missense PGAP2 variant NM_014489.3:c.881Câ¯>â¯T, p.Thr294Met in two index patients and targeted sequencing to identify this variant in an unrelated patient. Rescue assays were conducted in two PGAP2 deficient cell lines, PGAP2 KO cells generated by CRISPR/Cas9 and PGAP2 deficient CHO cells, in order to examine the pathogenicity of the PGAP2 variant. First, we used the CHO rescue assay to establish that the wild type PGAP2 isoform 1, translated from transcript 1, is less active than the wild type PGAP2 isoform 8, translated from transcript 12 (alternatively spliced to omit exon 3). As a result, in our variant rescue assays, we used the more active NM_001256240.2:c.698Câ¯>â¯T, p.Thr233Met isoform 8 instead of NM_014489.3:c.881Câ¯>â¯T, p.Thr294Met isoform 1. Flow cytometric analysis showed that restoration of cell surface CD59 and CD55 with variant PGAP2 isoform 8, driven by the weak (pTA FLAG) promoter, was less efficient than wild type isoform 8. Therefore, we conclude that recessive inheritance of c.881Câ¯>â¯T PGAP2, expressed as the hypomorphic PGAP2 c.698Câ¯>â¯T, p.Thr233Met isoform 8, results in prototypical Mabry phenotype, HPMRS3 (GPIBD 8 [MIM: 614207]). This study highlights the need for long-term follow up of individuals with rare diseases in order to ensure that they benefit from innovations in diagnosis and treatment.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |