例如:"lncRNA", "apoptosis", "WRKY"

Systematic exploration of predicted destabilizing nonsynonymous single nucleotide polymorphisms (nsSNPs) of human aldehyde oxidase: A Bio-informatics study.

Pharmacol Res Perspect. 2019 Nov 22;7(6):e00538. eCollection 2019 Dec
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Aldehyde Oxidase (hAOX1) is a cytosolic enzyme involved in the metabolism of drugs and xenobiotic compounds. The enzyme belongs to the xanthine oxidase (XO) family of Mo containing enzyme and is a homo-dimer of two 150 kDa monomers. Nonsynonymous (nsSNPs) of hAOX1 have been reported as affecting the ability of the enzyme to metabolize different substrates. Some of these nsSNPs have been biochemically and structurally characterized but the lack of a systematic and comprehensive study regarding all described and validated nsSNPs is urgent, due to the increasing importance of the enzyme in drug development, personalized medicine and therapy, as well as in pharmacogenetic studies. The objective of the present work was to collect all described nsSNPs of hAOX1 and utilize a series of bioinformatics tools to predict their effect on protein structure stability with putative implications on phenotypic functional consequences. Of 526 nsSNPs reported in NCBI-dbSNP, 119 are identified as deleterious whereas 92 are identified as nondeleterious variants. The stability analysis was performed for 119 deleterious variants and the results suggest that 104 nsSNPs may be responsible for destabilizing the protein structure, whereas five variants may increase the protein stability. Four nsSNPs do not have any impact on protein structure (neutral nsSNPs) of hAOX1. The prediction results of the remaining six nsSNPs are nonconclusive. The in silico results were compared with available experimental data. This methodology can also be used to identify and prioritize the stabilizing and destabilizing variants in other enzymes involved in drug metabolism.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读