例如:"lncRNA", "apoptosis", "WRKY"

Circular RNA CircCCNB1 sponges micro RNA-449a to inhibit cellular senescence by targeting CCNE2.

Aging (Albany NY). 2019 Nov 25;11(22):10220-10241. Epub 2019 Nov 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Circular RNAs (CircRNAs) are a novel subset of non-coding RNA widely present in eukaryotes that play a central role in physiological and pathological conditions. Accumulating evidence has indicated that CircRNAs participated in modulating tumorigenesis by acting as a competing endogenous RNA (CeRNA). However, the roles and functions of CircRNAs in cellular senescence and aging of organisms remain largely obscure. We performed whole transcriptome sequencing to compare the expression patterns of circular RNAs in young and prematurely senescent human diploid fibroblast 2BS cells, and identified senescence-associated circRNAs (SAC-RNAs). Among these SAC-RNAs, we observed the significantly downregulated expression of CircRNAs originating from exons 6 and 7 circularization of the cyclin B1 gene (CCNB1), termed CircCCNB1. Reduced CircCCNB1 expression triggered senescence in young 2BS cells, as measured by increased senescence associated-beta-galactosidase (SA-β-gal) activity, enhanced expression of cyclin-dependent kinase inhibitor 1A (CDKN1A)/P21 and tumor protein 53 (TP53) expression, and reduced cell proliferation. Mechanistically, reduced CircCCNB1 level inhibited cyclin E2 (CCNE2) expression by modulating micro RNA (miR)-449a activity, which repressed cellular proliferation. Our data suggested that CircCCNB1may serve as a sponge against miR-449a to delay cellular senescence by targeting CCNE2. Targeting CircCCNB1 may represent a promising strategy for aging and age-related disease interventions. Furthermore, we also identified and characterized several kinds of the CircCCNB1-binding proteins (CBPs), which may contribute to the degradation of CircCCNB1.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读