例如:"lncRNA", "apoptosis", "WRKY"

KIF18B as a regulator in microtubule movement accelerates tumor progression and triggers poor outcome in lung adenocarcinoma.

Tissue Cell. 2019 Dec;61:44-50. Epub 2019 Sep 03
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


KIF18B is involved in several tumor progression and exerts critical effects on microtubule growth during mitosis, but its role in lung adenocarcinoma still remains rare. Hence, we attempted to explore the biological function of KIF18B in lung adenocarcinoma. We first analyzed the expressional pattern of KIF18B in lung adenocarcinoma, and detected the correlation between KIF18B expression and clinical characteristics in lung adenocarcinoma based on The Cancer Genome Atlas (TCGA) database and Oncomine dataset. Subsequently, cell counting kit-8 (CCK-8) assay, wound-healing analysis, and transwell method were performed to assess the effects of KIF18B in lung adenocarcinoma cells. Quantitative real-time reverse transcription-PCR (qRT-PCR) and western blotting were utilized to measure the mRNA and protein expression levels. Our results illustrated that KIF18B expression was significantly up-regulated in lung adenocarcinoma samples compared to normal specimens. High levels of KIF18B were associated with unfavorable prognosis of lung adenocarcinoma patients. Down-regulation of KIF18B in lung adenocarcinoma cells inhibited cell prolifartion, migration, and invasion. Western blot assay demonstrated that KIF18B knockdown markedly decreased Rac1-GTP expression, an important marker of migration and invasion in tumors. Moreover, the phosphorylation of AKT and mTOR expression levels were attenuated after KIF18B knockdown. Taken together, these data enhanced the point that KIF18B might promote lung adenocarcinoma cell proliferation, migration, and invasion by activating Rac1 and mediating the AKT/mTOR signaling pathway.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读