例如:"lncRNA", "apoptosis", "WRKY"

Great clinical variability of Nance Horan syndrome due to deleterious NHS mutations in two unrelated Spanish families.

Ophthalmic Genet.2019 Dec;40(6):553-557. doi:10.1080/13816810.2019.1692362. Epub 2019 Nov 22
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Background: Nance-Horan syndrome (NHS) is an X-linked rare congenital disorder caused by mutations in the NHS gene. Clinical manifestations include congenital cataracts, facial and dental dysmorphism and, in some cases, intellectual disability. The aim of the present work was to identify the genetic cause of this disease in two unrelated Spanish NHS families and to determine the relative involvement of this gene in the pathogenesis.Materials and methods: Four members of a two-generation family, three males and one female (Family 1), and seven members of a three-generation family, two males and five females (Family 2) were recruited and their index cases were screened for mutations in the NHS gene and 26 genes related with ocular congenital anomalies by NGS (Next Generation Sequencing).Results: Two pathogenic variants were found in the NHS gene: a nonsense mutation (p.Arg373X) and a frameshift mutation (p.His669ProfsX5). These mutations were found in the two unrelated NHS families with different clinical manifestations.Conclusions: In the present study, we identified two truncation mutations (one of them novel) in the NHS gene, associated with NHS. Given the wide clinical variability of this syndrome, NHS may be difficult to detect in individuals with subtle clinical manifestations or when congenital cataracts are the primary clinical manifestation which makes us suspect that it can be underdiagnosed. Combination of genetic studies and clinical examinations are essential for the clinical diagnosis optimization.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读