例如:"lncRNA", "apoptosis", "WRKY"

Histone-induced thrombotic thrombocytopenic purpura in adamts13 -/- zebrafish depends on von Willebrand factor.

Haematologica. 2020 Apr;105(4):1107-1119. Epub 2019 Nov 21
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Thrombotic thrombocytopenic purpura (TTP) is caused by severe deficiency of ADAMTS13 (A13), a plasma metalloprotease that cleaves endothelium-derived von Willebrand factor (VWF). However, severe A13 deficiency alone is often not sufficient to cause an acute TTP; additional factors may be required to trigger the disease. Using CRISPR/Cas9, we created and characterized several novel zebrafish lines carrying a null mutation in a13 , vwf, and both. We further used these zebrafish lines to test the hypothesis that inflammation that results in neutrophil activation and release of histone/DNA complexes may trigger TTP. As shown, a13 zebrafish exhibit increased levels of plasma VWF antigen, multimer size, and ability of thrombocytes to adhere to a fibrillar collagen-coated surface under flow. The a13 zebrafish also show an increased rate of occlusive thrombus formation in the caudal venules after FeCl3 injury. More interestingly, a13 zebrafish exhibit ~30% reduction in the number of total, immature, and mature thrombocytes with increased fragmentation of erythrocytes. Administration of a lysine-rich histone results in more severe and persistent thrombocytopenia and a significantly increased mortality rate in a13 zebrafish than in wildtype (wt) ones. However, both spontaneous and histone-induced TTP in a13 zebrafish are rescued by the deletion of vwf These results demonstrate a potentially mechanistic link between inflammation and the onset of TTP in light of severe A13 deficiency; the novel zebrafish models of TTP may help accelerate our understanding of pathogenic mechanisms and the discoveries of novel therapeutics for TTP and perhaps other arterial thrombotic disorders.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读