例如:"lncRNA", "apoptosis", "WRKY"

N-WASP knockdown upregulates inflammatory cytokines expression in human gingival fibroblasts.

Arch. Oral Biol.2020 Feb;110:104605. Epub 2019 Nov 09
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


OBJECTIVE:The neuronal wiskott-aldrich syndrome protein (N-WASP) is a member of the wiskott-aldrich syndrome protein (WASP) family. N-WASP plays a vital role in promoting cell migration, receptor signaling and immune inflammatory responses. This study aimed to observe the changes in the expression of inflammatory factors and involving pathways after N-WASP knockdown in human gingival fibroblasts (HGFs). DESIGN:Gingival inflammatory condition of N-WASP knockout mice was evaluated by H&E staining. N-WASP in HGFs was knockdown by siRNA and the best knockdown efficiency was determined by qRT-PCR and immunofluorescence. The mRNA levels of interleukin (IL)-6, IL-8, C-C motif ligand 2 (CCL2), superoxide dismutase 2 (SOD2) and prostaglandin endoperoxide synthase 2 (PTGS2) were evaluated by qRT-PCR after N-WASP knockdown with or without mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) inhibitors. The protein levels of IL-6, IL-8 and CCL2 were assessed by ELISA. Western blotting was used to detect the activation of NF-κB and MAPK signaling pathways. RESULTS:Gingival tissue from N-WASP knockout mice exhibited an inflammatory reaction. The expression of IL-6, IL-8, CCL2, SOD2 and PTGS2 was significantly upregulated after N-WASP knockdown in HGFs for 6, 24 and 48 h, except for the SOD2 at 6 h. N-WASP knockdown significantly activated the signaling pathways of NF-κB and MAPK. The inhibitors of p65, p38, ERK and JNK clearly decreased IL-6, IL-8, CCL2, SOD2 and PTGS2 expression after N-WASP knockdown. CONCLUSION:These data indicated that N-WASP deficiency in HGFs increases the production of inflammatory cytokine and is regulated via NF-κB and MAPK signaling pathways.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读