例如:"lncRNA", "apoptosis", "WRKY"

Apoptosis signal regulating kinase 1 deletion mitigates α-synuclein pre-formed fibril propagation in mice.

Neurobiol Aging. 2020 Jan;85:49-57. Epub 2019 Sep 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


α-Synuclein (α-Syn) is a key pathogenic protein in α-synucleinopathies including Parkinson disease and dementia with Lewy bodies. Accumulating evidence has shown that misfolded fibrillar α-Syn is transmitted from cell-to-cell, a phenomenon that correlates with clinical progression of the disease. We previously showed that deleting the MAP3 kinase apoptosis signal-regulating kinase 1 (ASK1), which is a central player linking oxidative stress with neuroinflammation, mitigates the phenotype of α-Syn transgenic mice. However, whether ASK1 impacts pathology and disease progression induced by recombinant α-Syn pre-formed fibrils (PFF) remains unknown. Here, we compared the neuropathological and behavioral phenotype of ASK1 knock-out mice with that of wild-type mice following intrastriatal injections of α-Syn PFF. At 6 months post-injections, ASK1 null mice exhibited reduced amount of phosphorylated α-Syn aggregates in the striatum and cortex, and less pronounced degeneration of the nigrostriatal pathway. Additionally, the neuroinflammatory reaction to α-Syn PFF injection and propagation seen in wild-type mice was attenuated in ASK1 knock-out animals. These neuropathological markers were associated with better behavioral performance. These data suggest that ASK1 plays an important role in pathological α-Syn fibril transmission and, consequently, may impact disease progression. These findings collectively support inhibiting ASK1 as a disease modifying therapeutic strategy for Parkinson disease and related α-synucleinopathies.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读