例如:"lncRNA", "apoptosis", "WRKY"

LncRNA LOXL1-AS1/miR-28-5p/SEMA7A axis facilitates pancreatic cancer progression.

Cell Biochem. Funct.2020 Jan;38(1):58-65. doi:10.1002/cbf.3449. Epub 2019 Nov 15
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Pancreatic cancer (PC), one of the most aggressive and lethal human malignancies, is associated with a deplorable prognosis despite progressive therapeutic strategies. Emerging evidence manifests that miR-28-5p is involved in several cancers, and its descending expression is associated with poor prognosis. Nevertheless, the function of miR-28-5p in PC remains unclear. Thus, the underlying regulatory mechanism of miR-28-5p in PC is urgent to be clarified. In the present study, we first recognized miR-28-5p was downregulated in PC, and miR-28-5p overexpression inhibited cell proliferation and migration in PC. Then miR-28-5p was verified to act as a molecular sponge of LOXL1-AS1. Therefore, the function of LOXL1-AS1 was further explored in PC, presenting that LOXL1-AS1 suppression inhibited cell proliferation and migration. What is more, SEMA7A was found to be a target gene for miR-28-5p and was upregulated in PC. In addition, LOXL1-AS1 could positively regulate SEMA7A expression while miR-28-5p could negatively regulate SEMA7A expression. According to rescue experiments, SEMA7A overexpression partially neutralized LOXL1-AS1 silence-mediated inhibitory function on progression in PC. Taken together, all the data demonstrated that LOXL1-AS1/miR-28-5p/SEMA7A axis facilitated pancreatic cancer progression, which may be regarded as an innovative therapeutic target for PC treatment. SIGNIFICANCE OF THE STUDY: Our findings constitute the first report to delineate that lncRNA LOXL1-AS1/miR-28-5p/SEMA7A axis facilitates PC progression. According to our experimental results, we found the expression of miR-28-5p was downregulated in PC cells and miR-28-5p overexpression inhibited cell proliferation and migration in PC. LOXL1-AS1 could sponge miR-28-5p and then upregulate the expression of SEMA7A. Thus, LOXL1-AS1/miR-28-5p/SEMA7A axis facilitated PC progression. This initially proposed point might provide a novel molecular target for PC treatment.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读