例如:"lncRNA", "apoptosis", "WRKY"

MicroRNA-21 deficiency attenuated atherogenesis and decreased macrophage infiltration by targeting Dusp-8.

Atherosclerosis. 2019 Dec;291:78-86. Epub 2019 Oct 11
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND AND AIMS:Atherosclerosis is a chronic inflammatory disorder mediated by macrophage activation. MicroRNA-21 (miR-21) is a key regulator in the macrophage inflammatory response. However, the functional role of miR-21 in atherogenesis is far from clear. METHODS AND RESULTS:Here, we report that miR-21 is significantly upregulated in mouse atherosclerotic plaques and peripheral monocytes from patients with coronary artery disease. Compared with miR-21+/+apoE-/- mice (apoE-/- mice), miR-21-/-apoE-/- (double knockout, DKO) mice showed less atherosclerotic lesions, reduced presence of macrophages, decreased smooth muscle cells(SMC) and collagen content in the aorta. We further explored the role of miR-21 in macrophage activation in vitro. Bone marrow-derived macrophages (BMDMs) from DKO mice not only exhibit impaired function of migration induced by chemokine (C-C motif) ligand 2 (CCL2) but also a weakened macrophage-endothelium interaction activated by tumor necrosis factor-α (TNF-α). However, atherogenic inflammatory cytokine secretion was not affected by miR-21 in vitro or in vivo. Additionally, miR-21 knockdown in BMDMs directly derepressed the expression of dual specificity protein phosphatase 8 (Dusp-8), a previously validated miR-21 target in cardiac fibroblasts, which negatively regulates mitogen-activated protein kinase (MAPK) signaling, particularly the p38-and c-Jun N-terminal kinase (JNK)-related signaling pathways. CONCLUSIONS:These data demonstrate that inhibition of miR-21 may restrict the formation of atherosclerotic plaques partly by regulating macrophage migration and adhesion, while, reduced SMCs and collagen content in plaques may lead to a less stable phenotype with the progression of atherosclerosis. Thus, the absence of miR-21 reduces atherosclerotic lesions but may not represent all benefit in atherosclerosis development.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读