例如:"lncRNA", "apoptosis", "WRKY"

Investigating the stability of dengue virus envelope protein dimer using well-tempered metadynamics simulations.

Proteins. 2020 May;88(5):643-653. doi:10.1002/prot.25844. Epub 2019 Nov 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


We explored the stability of the dengue virus envelope (E) protein dimer since it is widely assumed that the E protein dimer is stabilized by drug ligands or antibodies in an acidic environment, neutralizing the virus's ability to fuse with human cells. During this process, a large conformational change of the E protein dimer is required. We performed Molecular Dynamics simulations to mimic the conformational change and stability of the dimer in neutral and acidic conditions with the well-tempered metadynamics method. Furthermore, as a few neutralizing antibodies discovered from dengue patients were reported, we used the same simulation method to examine the influence of a selected antibody on the dimer stability in both neutral and acidic conditions. We also investigated the antibody's influence on a point-mutated E protein that had been reported to interrupt the protein-antibody interaction and result in more than 95% loss of the antibody's binding ability. Our simulation results are highly consistent with the experimental conclusion that binding of the antibody to the E protein dimer neutralizes the virus, especially in a low pH condition, while the mutation of W101A or N153A significantly reduces the antibody's ability in stabilizing the E protein dimer. We demonstrate that well-tempered metadynamics can be used to accurately explore the antibody's interaction on large protein complexes such as the E protein dimer, and the computational approach in this work is promising in future antibody development.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读