例如:"lncRNA", "apoptosis", "WRKY"

ClC-3 Deficiency Impairs the Neovascularization Capacity of Early Endothelial Progenitor Cells by Decreasing CXCR4/JAK-2 Signalling.

Can J Cardiol. 2019 Nov;35(11):1546-1556. Epub 2019 Aug 17
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Endothelial progenitor cell (EPC) therapy has been suggested as a major breakthrough in the treatment of ischemic diseases. However, the molecular mechanism that underlies EPC functional regulation is still unclear. METHODS:We examined the angiogenic capacity of EPCs in a hindlimb ischemia model of wild-type and ClC-3 knockout mice. RESULTS:Mice lacking of ClC-3 exhibited reduced blood flow recovery and neovascularization in ischemic muscles 7 and 14 days after hind limb ischemia. Moreover, compared with wild-type EPCs, the hindlimb blood reperfusion in mice receiving ClC-3 knockout EPCs was significantly impaired, accompanied by reduced EPC homing and retention. In vitro, EPCs derived from ClC-3 knockout mice displayed impaired migratory, adhesive, and angiogenic activity. CXC chemokine receptor 4 (CXCR4) expression was significantly reduced in EPC from ClC-3 knockout mice compared with wild-type. Moreover, the expression and phosphorylation of Janus kinase 2 (JAK-2), a downstream signalling of CXCR4, was also reduced in ClC-3 knockout EPC, indicating that CXCR4/JAK-2 signalling is dysregulated by ClC-3 deficiency. Consistent with this assumption, the migratory capacity of wild-type EPCs was attenuated by either CXCR4 antagonist AMD3100 or JAK-2 inhibitor AG490. More importantly, the impaired migratory capacity of ClC-3 knockout EPCs was rescued by overexpression of CXCR4. CONCLUSIONS:ClC-3 plays a critical role in the angiogenic capacity of EPCs and EPC-mediated neovascularization of ischemic tissues. Disturbance of CXCR4/JAK-2 signalling may contribute to the functional impairment of ClC-3 deficient EPCs. Thus, ClC-3 may be a potential therapeutic target for modulating neovascularization in ischemic diseases.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读