例如:"lncRNA", "apoptosis", "WRKY"

The dual benefit of a dominant mutation in Arabidopsis IRON DEFICIENCY TOLERANT1 for iron biofortification and heavy metal phytoremediation.

Plant Biotechnol J. 2020 May;18(5):1200-1210. doi:10.1111/pbi.13285. Epub 2019 Nov 20
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


One of the goals of biofortification is to generate iron-enriched crops to combat growth and developmental defects especially iron (Fe) deficiency anaemia. Fe-fortification of food is challenging because soluble Fe is unstable and insoluble Fe is nonbioavailable. Genetic engineering is an alternative approach for Fe-biofortification, but so far strategies to increase Fe content have only encompassed a few genes with limited success. In this study, we demonstrate that the ethyl methanesulfonate (EMS) mutant, iron deficiency tolerant1 (idt1), can accumulate 4-7 times higher amounts of Fe than the wild type in roots, shoots and seeds, and exhibits the metal tolerance and iron accumulation (Metina) phenotype in Arabidopsis. Fe-regulated protein stability and nuclear localisation of the upstream transcriptional regulator bHLH34 were uncovered. The C to T transition mutation resulting in substitution of alanine to valine at amino acid position 320 of bHLH34 (designated as IDT1A320V ) in a conserved motif among mono- and dicots was found to be responsible for a dominant phenotype that possesses constitutive activation of the Fe regulatory pathway. Overexpression of IDT1A320V in Arabidopsis and tobacco led to the Metina phenotype; a phenotype that has escalated specificity towards optimising Fe homeostasis and may be useful in Fe-biofortification. Knowledge of the high tolerance and accumulation of heavy metals of this mutant can aid the development of tools for phytoremediation of contaminants.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读