例如:"lncRNA", "apoptosis", "WRKY"

Chronic Alcohol Consumption Enhances Skeletal Muscle Wasting in Mice Bearing Cachectic Cancers: The Role of TNFα/Myostatin Axis.

Alcohol Clin Exp Res. 2020 Jan;44(1):66-77. doi:10.1111/acer.14221. Epub 2019 Nov 11
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Chronic alcohol consumption enhances cancer-associated cachexia, which is one of the major causes of decreased survival. The precise molecular mechanism of how alcohol consumption enhances cancer-associated cachexia, especially skeletal muscle loss, remains to be elucidated. METHODS:We used a mouse model of chronic alcohol consumption, in which 20% (w/v) alcohol was provided as sole drinking fluid, and Lewis lung carcinoma to study the underlying mechanisms. RESULTS:We found that alcohol consumption up-regulated the expression of MAFbx, MuRF-1, and LC3 in skeletal muscle, suggesting that alcohol enhanced ubiquitin-mediated proteolysis and LC3-mediated autophagy. Alcohol consumption enhanced phosphorylation of Smad2/3, p38, and ERK and decreased the phosphorylation of FOXO1. These are the signaling molecules governing protein degradation pathways. Moreover, alcohol consumption slightly up-regulated the expression of insulin receptor substrate-1, did not affect phosphatidylinositol-3 kinase, but decreased the phosphorylation of Akt and mammalian target of rapamycin (mTOR), and down-regulated the expression of Raptor and p70 ribosomal kinase S6 kinase, suggesting that alcohol impaired protein synthesis signaling pathway in skeletal muscle of tumor-bearing mice. Alcohol consumption enhanced the expression of myostatin in skeletal muscle, plasma, and tumor, but did not affect the expression of myostatin in non-tumor-bearing mice. In TNFα knockout mice, the effects of alcohol-enhanced expression of myostatin and protein degradation-related signaling molecules, and decreased protein synthesis signaling in skeletal muscle were abolished. Consequently, alcohol consumption neither affected cancer-associated cachexia nor decreased the survival of TNFα KO mice bearing cachectic cancer. CONCLUSIONS:Chronic alcohol consumption enhances cancer-associated skeletal muscle loss through suppressing Akt/mTOR-mediated protein synthesis pathway and enhancing protein degradation pathways. This process is initiated by TNFα and mediated by myostatin.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读