例如:"lncRNA", "apoptosis", "WRKY"

Induction of time- and dose-dependent oxidative stress of triazophos to brain and liver in zebrafish (Danio rerio).

Comp. Biochem. Physiol. C Toxicol. Pharmacol.2020 Feb;228:108640. Epub 2019 Oct 22
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Extensive use of triazophos for the chemical control of pests in agriculture or aquaculture might strongly disturb the aquatic environment due to residue accumulation through various routes like surface run-off, spray-drift and effluent from factories, which have potential negative effects to non-target aquatic organisms. Previous studies have documented the antioxidative effects of triazophos to mammals, however, the oxidative toxicity of triazophos to fish has not been adequately studied to date. Thus, an acute exposure (96 h) to triazophos at different concentrations of 0.06, 0.3 and 1.5 mg/L (corresponding to 1/50th, 1/10th and 1/2th of 96 h-LC50, respectively), was conducted to investigate the triazophos-induced oxidative stress in adult zebrafish (Danio rerio). The results showed that the time- and dose-dependent induction of oxidative stress except for the level in liver after 24 and 48 h exposure, as indicated by increased reactive oxygen species malondialdehyde (MDA) level and a compromised antioxidant defense system, including increased superoxide dismutase (SOD) activity, catalase (CAT) activity, glutathione (GSH) content as well as the increased at first and decreased afterwards genes expression (Sod1, Sod2, Cat and Gpx) in brain. Simultaneously, duanyu1670 and MDA showed an increased trend, SOD activity, CAT activity and GSH content showed a trend of increasing at 24 h and decreasing at 48 h, and then increasing at 96 h and Sod1, Sod2, Cat and Gpx gene showed decreasing at first and then increasing in liver tissue. The present study concluded that the damage of the antioxidant system by triazophos induced oxidative stress in the brain and liver of zebrafish with concomitant lipid peroxidation, which is an important mechanism underlying the triazophos-induced acute toxicity.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读