例如:"lncRNA", "apoptosis", "WRKY"

NLS-RARα contributes to differentiation block and increased leukemogenic potential in vivo.

Cell Signal. 2020 Jan;65:109431. Epub 2019 Oct 22
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The fusion oncogene, promyelocytic leukemia (PML)-retinoic acid receptor-α (RARα), is crucial for acute promyelocytic leukemia (APL) pathogenesis. Previous studies have reported that PML-RARα is cleaved by neutrophil elastase (NE), an early myeloid-specific serine protease, leading to translocation of the nuclear localization signal (NLS) of the PML protein to the N-terminal of RARα. This study was designed to evaluate the value of NLS-RARα in the early diagnosis of APL. To investigate the potential functional role of NLS-RARα in leukemogenesis, HL-60 and U937 cell lines were transfected with NLS-RARα lentivirus and negative control (LVNC). The results showed that the induced expression of NLS-RARα down-regulated expressions of CD11b, CD11c, and CD14 compared to the LVNC group induced by 1α, 25-dihydroxyvitamin D3(1,25(OH)2D3). This suggested that NLS-RARα overexpression inhibited granulocytic and monocytic differentiation of myeloid leukemia cells. In addition, Wright-Giemsa staining, flow cytometry, respiratory burst assay, and NBT reduction assay all confirmed the importance of NLS-RARα in differentiation. The mechanistic investigations revealed that induced NLS-RARα expression inhibited 1,25(OH)2D3-induced granulocytic differentiation by regulating the cell cycle regulators p19INK4D, p21WAF1/CIP1, cyclinD1, cyclin E1, and pRB. Furthermore, the cleaved protein NLS-RARα enhanced the oncogenicity of U937 cells in NOD/SCID mice. These findings collectively demonstrated that NLS-RARα blocked granulocytic and monocytic differentiation of myeloid leukemia cells by inhibiting the downstream targets of the RARα signal pathway and the cell cycle. This may provide a promising new target and method for diagnosing and treating APL.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读