例如:"lncRNA", "apoptosis", "WRKY"

Nutrient mTORC1 signaling underpins regulatory T cell control of immune tolerance.

J Exp Med. 2020 Jan 06;217(1)
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Foxp3+ regulatory T (T reg) cells are pivotal regulators of immune tolerance, with T cell receptor (TCR)-driven activated T reg (aT reg) cells playing a central role; yet how TCR signaling propagates to control aT reg cell responses remains poorly understood. Here we show that TCR signaling induces expression of amino acid transporters, and renders amino acid-induced activation of mTORC1 in aT reg cells. T reg cell-specific ablation of the Rag family small GTPases RagA and RagB impairs amino acid-induced mTORC1 signaling, causing defective amino acid anabolism, reduced T reg cell proliferation, and a rampant autoimmune disorder similar in severity to that triggered by T reg cell-specific TCR deficiency. Notably, T reg cells in peripheral tissues, including tumors, are more sensitive to Rag GTPase-dependent nutrient sensing. Ablation of RagA alone impairs T reg cell accumulation in the tumor, resulting in enhanced antitumor immunity. Thus, nutrient mTORC1 signaling is an essential component of TCR-initiated T reg cell reprogramming, and Rag GTPase activities may be titrated to break tumor immune tolerance. © 2019 Do et al.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读