例如:"lncRNA", "apoptosis", "WRKY"

Common Mode of Remodeling AAA ATPases p97/CDC48 by Their Disassembling Cofactors ASPL/PUX1.

Structure. 2019 Dec 03;27(12):1830-1841.e3. Epub 2019 Oct 21
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The hexameric ring structure of the type II AAA+ ATPases is considered as stable and permanent. Recently, the UBX domain-containing cofactors Arabidopsis thaliana PUX1 and human alveolar soft part sarcoma locus (ASPL) were reported to bind and disassemble the cognate AAA+ ATPases AtCDC48 and human p97. Here, we present two crystal structures related to these complexes: a truncated AtCDC48 (AtCDC48-ND1) and a hybrid complex containing human p97-ND1 and the UBX domain of plant PUX1 (p97-ND1:PUX1-UBX). These structures reveal close similarity between the human and plant AAA+ ATPases, but also highlight differences between disassembling and non-disassembling AAA+ ATPase cofactors. Based on an AtCDC48 disassembly assay with PUX1 and known crystal structures of the p97-bound human cofactor ASPL, we propose a general ATPase disassembly model. Thus, our structural and biophysical investigations provide detailed insight into the mechanism of AAA+ ATPase disassembly by UBX domain cofactors and suggest a general mode of regulating the cellular activity of these molecular machines.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读