例如:"lncRNA", "apoptosis", "WRKY"

Particulate matter of 2.5 μm or less in diameter disturbs the balance of TH17/regulatory T cells by targeting glutamate oxaloacetate transaminase 1 and hypoxia-inducible factor 1α in an asthma model.

J. Allergy Clin. Immunol.2020 Jan;145(1):402-414. Epub 2019 Oct 21
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Epidemiologic evidence suggests that exposure to particulate matter of 2.5 μm or less in diameter (PM2.5) aggravates asthma. OBJECTIVE:We sought to investigate the underlying mechanisms between PM2.5 exposure and asthma severity. METHODS:The relationship between PM2.5 exposure and asthma severity was investigated in an asthma model with CD4+ T cell-specific aryl hydrocarbon receptor (AhR)-null mice. Effects of PM2.5 and polycyclic aromatic hydrocarbons (PAHs) on differentiation of TH17/regulatory T (Treg) cells were investigated by using flow cytometry and quantitative RT-PCR. Mechanisms were investigated by using mRNA sequencing, chromatin immunoprecipitation, bisulfite sequencing, and glycolysis rates. RESULTS:PM2.5 impaired differentiation of Treg cells, promoted differentiation of TH17 cells, and aggravated asthma in an AhR-dependent manner. PM2.5 and one of its prominent PAHs, indeno[1,2,3-cd]pyrene (IP), promoted differentiation of TH17 cells by upregulating hypoxia-inducible factor 1α expression and enhancing glycolysis through AhRs. Exposure to PM2.5 and IP enhanced glutamate oxaloacetate transaminase 1 (Got1) expression through AhRs and accumulation of 2-hydroxyglutarate, which inhibited ten-eleven translocation methylcytosine dioxygenase 2 activity, resulting in hypermethylation in the forkhead box P3 locus and impaired differentiation of Treg cells. A GOT1 inhibitor, (aminooxy)acetic acid, ameliorated asthma by shifting differentiation of TH17 cells to Treg cells. Similar regulatory effects of exposure to PM2.5 or IP on TH17/Treg cell imbalance were noted in human T cells, and in a case-control design PAH exposure appeared to be a potential risk factor for asthma. CONCLUSIONS:The AhR-hypoxia-inducible factor 1α and AhR-GOT1 molecular pathways mediate pulmonary responses on exposure to PM2.5 through their ability to disturb the balance of TH17/Treg cells.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读