例如:"lncRNA", "apoptosis", "WRKY"

Hyperglycemia-induced ubiquitination and degradation of β-catenin with the loss of platelet endothelial cell adhesion molecule-1 in retinal endothelial cells.

Microcirculation. 2020 Feb;27(2):e12596. doi:10.1111/micc.12596. Epub 2019 Nov 07
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


OBJECTIVE:Increased retinal vascular permeability is one of the earliest manifestations of diabetic retinopathy. The aim of this study was to investigate the role of hyperglycemia-induced platelet endothelial cell adhesion molecule-1 loss on retinal vascular permeability via the β-catenin pathway. METHODS:Type I diabetes was induced in male Wistar rats using streptozotocin injections, with age-matched non-diabetic rats as controls. Rat retinal microvascular endothelial cells were grown under normal or high glucose conditions for 6 days. Small interfering Ribonucleic Acid was used to knock down platelet endothelial cell adhesion molecule-1 in rat retinal microvascular endothelial cells for loss-of-function studies. Retinas and rat retinal microvascular endothelial cells were subjected to Western blot, immunofluorescence labeling, and co-immunoprecipitation analyses to assess protein levels and interactions. A biotinylated gelatin and fluorescein isothiocyanate-avidin assay was used for retinal endothelial cell permeability studies. RESULTS:β-catenin, β-catenin/platelet endothelial cell adhesion molecule-1 interaction, active Src homology 2 domain-containing protein tyrosine phosphatase were significantly decreased, while β-catenin ubiquitination levels and endothelial permeability were significantly increased, in hyperglycemic retinal endothelial cells. Similar results were observed with platelet endothelial cell adhesion molecule-1 partial knockdown, where β-catenin and active Src homology 2 domain-containing protein tyrosine phosphatase levels were decreased, while phospho-β-catenin and retinal endothelial cell permeability were increased. CONCLUSION:Platelet endothelial cell adhesion molecule-1 loss may contribute to increased retinal endothelial cell permeability by attenuating β-catenin levels under hyperglycemic conditions.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读