例如:"lncRNA", "apoptosis", "WRKY"

MiR-183-5p protects rat hearts against myocardial ischemia/reperfusion injury through targeting VDAC1.

Biofactors. 2020 Jan;46(1):83-93. doi:10.1002/biof.1571. Epub 2019 Oct 16
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


MicroRNAs have been reported to be implicated in myocardial ischemia/reperfusion (I/R) injury. The purpose of this study was to investigate the effect of miR-183-5p on I/R injury. Overexpression of miR-183-5p by agomiR transfection alleviated cardiac dysfunction and significantly reduced the infarct size in rats with myocardial I/R. MiR-183-5p also alleviated myocardial apoptosis with reduced apoptotic cells and lower levels of apoptosis associated proteins. in vitro experiments were conducted on rat H9c2 cells treated with anoxia/reoxygenation (A/R). Annexin V/propidium iodide (PI) staining and flow cytometry reported that the ratio of apoptotic cells decreased by miR-183-5p transfection before A/R treatment. Moreover, according to binding sequence prediction and Dual luciferase reporter assay, we explored that voltage-dependent anion channel 1 (VDAC1), which aggravates myocardial injury and apoptosis reported in our former research, was a target of miR-183-5p. In conclusion, miR-183-5p can efficiently attenuate I/R injury and miR-183-5p may exert its effect through repressing VDAC1 expression.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读