例如:"lncRNA", "apoptosis", "WRKY"

Glutaredoxin1 Diminishes Amyloid Beta-Mediated Oxidation of F-Actin and Reverses Cognitive Deficits in an Alzheimer's Disease Mouse Model.

Antioxid Redox Signal. 2019 Dec 20;31(18):1321-1338. doi:10.1089/ars.2019.7754
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Reactive oxygen species generated during Alzheimer's disease (AD) pathogenesis through multiple sources are implicated in synaptic pathology observed in the disease. We have previously shown F-actin disassembly in dendritic spines in early AD (34). The actin cytoskeleton can be oxidatively modified resulting in altered F-actin dynamics. Therefore, we investigated whether disruption of redox signaling could contribute to actin network disassembly and downstream effects in the amyloid precursor protein/presenilin-1 double transgenic (APP/PS1) mouse model of AD. Synaptosomal preparations from 1-month-old APP/PS1 mice showed an increase in levels, coupled with a decrease in the reduced form of F-actin and increase in glutathionylated synaptosomal actin. Furthermore, synaptic glutaredoxin 1 (Grx1) and thioredoxin levels were found to be lowered. Overexpressing Grx1 in the brains of these mice not only reversed F-actin loss seen in APP/PS1 mice but also restored memory recall after contextual fear conditioning. F-actin levels and F-actin nanoarchitecture in spines were also stabilized by Grx1 overexpression in APP/PS1 primary cortical neurons, indicating that glutathionylation of F-actin is a critical event in early pathogenesis of AD, which leads to spine loss. Loss of thiol/disulfide oxidoreductases in the synapse along with increase in duanyu1670 can render F-actin nanoarchitecture susceptible to oxidative modifications in AD. Our findings provide novel evidence that altered redox signaling in the form of S-glutathionylation and reduced Grx1 levels can lead to synaptic dysfunction during AD pathogenesis by directly disrupting the F-actin nanoarchitecture in spines. Increasing Grx1 levels is a potential target for novel disease-modifying therapies for AD.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读