例如:"lncRNA", "apoptosis", "WRKY"

An RBPJ-Drosophila Model Reveals Dependence of RBPJ Protein Stability on the Formation of Transcription-Regulator Complexes.

Cells. 2019 Oct 14;8(10)
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Notch signaling activity governs widespread cellular differentiation in higher animals, including humans, and is involved in several congenital diseases and different forms of cancer. Notch signals are mediated by the transcriptional regulator RBPJ in a complex with activated Notch (NICD). Analysis of Notch pathway regulation in humans is hampered by a partial redundancy of the four Notch receptor copies, yet RBPJ is solitary, allowing its study in model systems. In Drosophila melanogaster, the RBPJ orthologue is encoded by Suppressor of Hairless [Su(H)]. Using genome engineering, we replaced Su(H) by murine RBPJ in order to study its function in the fly. In fact, RBPJ largely substitutes for Su(H)'s function, yet subtle phenotypes reflect increased Notch signaling activity. Accordingly, the binding of RBPJ to Hairless (H) protein, the general Notch antagonist in Drosophila, was considerably reduced compared to that of Su(H). An H-binding defective RBPJLLL mutant matched the respective Su(H)LLL allele: homozygotes were lethal due to extensive Notch hyperactivity. Moreover, RBPJLLL protein accumulated at lower levels than wild type RBPJ, except in the presence of NICD. Apparently, RBPJ protein stability depends on protein complex formation with either H or NICD, similar to Su(H), demonstrating that the murine homologue underlies the same regulatory mechanisms as Su(H) in Drosophila. These results underscore the importance of regulating the availability of RBPJ protein to correctly mediate Notch signaling activity in the fly.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读