例如:"lncRNA", "apoptosis", "WRKY"

Circulating miR-103 family as potential biomarkers for type 2 diabetes through targeting CAV-1 and SFRP4.

. 2020 Mar;57(3):309-322. Epub 2019 Oct 03
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


AIMS:MicroRNA-103 (miR-103) family plays important roles in regulating glucose homeostasis in type 2 diabetes mellitus (DM2). However, the underlying mechanisms remain poorly characterized. The objective of this study was to test the hypothesis that circulating miR-103a and miR-103b, which regulate CAV-1 and SFRP4, respectively, are novel biomarkers for diagnosis of DM2. METHODS:We determined the predictive potential of circulating miR-103a and miR-103b in pre-DM subjects (pre-DM), noncomplicated diabetic subjects, and normal glucose-tolerance individuals (control) using bioinformatic analysis, qRT-PCR, luciferase assays, and ELISA assays. RESULTS:We found that both miR-103a and miR-103b had high complementarity and conservation, modulated reporter gene expression through seed sequences in the 3'UTRs of CAV-1 and SFRP4 mRNA, and negatively regulated their mRNA and protein levels, respectively. We also found that increased miR-103a and decreased miR-103a in plasma were significantly and negatively correlated with reduced CAV-1 levels and elevated SFRP4 levels in pre-DM and DM2, respectively, and were significantly associated with glucose metabolism, HbA1c levels, and other DM2 risk factors for progression from a normal individual to one with pre-DM. Furthermore, we demonstrated that the reciprocal changes in circulating miR-103a and miR-103b not only provided high sensitivity and specificity to differentiate the pre-DM population but also acted as biomarkers for predicting DM2 with high diagnostic value. CONCLUSIONS:These findings suggest that circulating miR-103a and miR-103b may serve as novel biomarkers for diagnosis of DM2, providing novel insight into the mechanisms underlying pre-DM.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读