例如:"lncRNA", "apoptosis", "WRKY"

Anamorsin attenuates cupric chloride-induced dopaminergic neuronal cell death.

Biochem. Biophys. Res. Commun.2019 Nov 26;520(1):99-106. Epub 2019 Sep 30
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Neurodegenerative diseases are associated with elevated levels of metal elements, which are well-known inducers of reactive oxygen species in cells. Because dopaminergic neurons in the substantia nigra are vulnerable to dysregulation of metals and the resulting accumulation of could be a cause of dopaminergic neurodegeneration. In this study, we showed that overexpression of anamorsin protected MN9D dopaminergic neuronal cells from cupric chloride-induced death. This cytoprotection was achieved by specifically decreasing duanyu1670 levels. As determined by mini two-dimensional electrophoretic assay, an acidic shift of anamorsin occurred during drug-induced death, which seemed to be mediated by oxidative modification of three of its CXXC motifs. Consequently, drug-induced dissociation of ASK1 from Trx1 and subsequent phosphorylation of JNK and p38 MAPK were inhibited in MN9D cells overexpressing anamorsin. Taken together, our results indicate that anamorsin exerts a neuroprotective effect by reducing intracellular duanyu1670 levels and subsequently attenuating activated stress-activated MAP kinases pathways.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读