[No authors listed]
Papillary and non-papillary are two histological patterns of bladder carcinogenesis and are considered as dual-track oncogenic pathways, which have different genetic alterations. The TCGA-bladder cancer (BLCA) database contains clinicopathological, genomic and survival data from over 400 muscle-invasive bladder cancer patients. In this study, using data from this database, we performed a systematic screening of gene expression to identify the protein-coding gene that might have prognostic value in papillary and non-papillary muscle-invasive bladder cancer (MIBC). The data of patients with primary MIBC in TCGA-BLCA was acquired from the UCSC Xena project (http://xena.ucsc.edu) for re-analysis. By setting |log2 fold change|â¥2 and adjusted p value <0.01 as the screening criteria, we found 751 significantly dysregulated genes, including 183 overexpressed and 568 downregulated genes. HMMR was identified as a potential prognostic marker with unique expression. Multivariate analysis showed that its expression was an independent prognostic indicator of shorter progression-free survival (PFS) (HR: 1.400, 95%CI: 1.021-1.920, pâ¯=â¯0.037) in the papillary subtype. ENST00000393915.8 and ENST00000358715.3, two transcripts that contain all 18 exons and encode the full length of HMMR, were significantly upregulated in cancer tissues compared with normal bladder tissues. None of the 17 CpG sites in its DNA locus was relevant to HMMR expression. 26/403 (6.5%) MIBC cases had HMMR gene-level amplification, which was associated with upregulated HMMR expression compared with the copy-neutral and deletion groups. Gene set enrichment analysis (GSEA) in papillary MIBC found that the high HMMR expression group was associated with upregulated genes enriched in multiple gene sets with well-established role in BC development, including G2M checkpoint, E2â¯F Targets, Myc Targets V1, Myc Targets V2 and Glycolysis. Based on these findings, we infer that HMMR expression might be a specific prognostic marker in terms of PFS in papillary MIBC. DNA amplification might be an important mechanism of its elevation.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |