例如:"lncRNA", "apoptosis", "WRKY"

Regulatory Macrophages Inhibit Alternative Macrophage Activation and Attenuate Pathology Associated with Fibrosis.

J. Immunol.2019 Oct 15;203(8):2130-2140. Epub 2019 Sep 20
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Diversity and plasticity are the hallmarks of macrophages. The two most well-defined macrophage subsets are the classically activated macrophages (CAMϕs) and the IL-4-derived alternatively activated macrophages (AAMϕs). Through a series of studies, we previously identified and characterized a distinct population of macrophages with immunoregulatory functions, collectively termed regulatory macrophages (RMϕs). Although considerable advances have been made in understanding these various macrophage subsets, it is not known whether macrophages of one activation state can influence the other. In this study, we examined whether RMϕs capable of inhibiting inflammatory responses of CAMϕs could also inhibit AAMϕs and their profibrotic responses. Our results demonstrated that RMϕs significantly dampened the alternate activation phenotype of AAMϕs generated in vitro and intrinsically occurring AAMϕs from TACI-/- macrophages. Further, RMϕs inhibited AAMϕ-promoted arginase activity and fibroblast proliferation in vitro. This inhibition occurred regardless of the strength, duration, and mode of alternative activation and was only partially dependent on IL-10. In the chlorhexidine gluconate-induced peritoneal fibrosis model, AAMϕs worsened the fibrosis, but RMϕs rescued mice from AAMϕ-mediated pathological conditions. Taken together, our study demonstrates that RMϕs are a specialized subset of macrophages with a nonredundant role in limiting overt proregenerative functions of AAMϕs, a role distinct from their well-defined role of suppression of inflammatory responses by CAMϕs.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读