[No authors listed]
The bacterial signal recognition particle (SRP) receptor, FtsY, participates with the SRP in co-translation targeting of proteins. Multiple crystal structures of the NG domain of E. coli FtsYNG have been determined at high-resolution (1.22-1.88â¯Ã ), in the nucleotide-free (apo) form as well as bound to GDP and non-hydrolysable GTP analogues. The combination of high-resolution and multiple solved structures of FtsYNG in different states revealed a new sensor-relay system of this unique GTPase receptor. A nucleotide sensing function of the P-loop assists FtsYNG in nucleotide-binding and contributes to modulate nucleotide binding properties in SRP GTPases. A reorganization of the other G-loops and the insertion binding domain (IBD) is observed only upon transition from a diphosphate to a triphosphate nucleotide. The role of a magnesium ion during the GDP and GTP-bound states has also been observed. The binding of magnesium in the nucleotide site causes the reorientation of the β- and γ- phosphate groups toward the jaws of the P-loop and stabilizes the binding of the nucleotide, creating a network of hydrogen and water-bridge interactions.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |