[No authors listed]
Long non-coding RNAs (lncRNAs) have structural and regulatory effects on RNA-binding proteins (RBPs). However, the mechanisms by which lncRNAs regulate the neurodegenerative-causative RBP like FUS protein remain poorly understood. Here, we show that knockdown of the Drosophila lncRNA hsrÏ causes a shift in the methylation status of human FUS from mono- (MMA) to di-methylated (DMA) arginine via upregulation of the arginine methyltransferase 5 (PRMT5, known as ART5 in flies). We found this novel regulatory role to be critical for FUS toxicity since the PRMT5-dependent dimethylation of FUS is required for its proteasomal degradation and causes a reduction of high levels of FUS. Moreover, we show that an increase of FUS causes a decline of both PRMT1 (known as ART1 in flies) and PRMT5 transcripts, leading to an accumulation of neurotoxic MMA-FUS. Therefore, overexpression of either PRMT1 or PRMT5 is able to rescue the FUS toxicity. These results highlight a novel role of lncRNAs in post-translation modification (PTM) of FUS and suggest a causal relationship between lncRNAs and dysfunctional PRMTs in the pathogenesis of FUSopathies.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |