例如:"lncRNA", "apoptosis", "WRKY"

Serine peptidase inhibitor Kazal type III (SPINK3) promotes BRL-3A cell proliferation by targeting the PI3K-AKT signaling pathway.

J Cell Physiol. 2020 Mar;235(3):2209-2219. doi:10.1002/jcp.29130. Epub 2019 Sep 02
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The serine protease inhibitor, Kazal type III (SPINK3), is a trypsin inhibitor associated with liver disease, which highly overexpresses in a variety of cancers. In one of our previous studies of our laboratory, Spink3 was observed to be significantly upregulated in rat liver regeneration (LR) via a gene expression profile. For the current study, rat hepatocyte BRL-3A cells were treated by gene addition/interference, and the addition of the exogenous rat recombinant protein SPINK3. It was revealed that both the overexpression of endogenous Spink3 and addition of exogenous rat recombinant SPINK3 (rrSPINK3) significantly promoted the cell proliferation of BRL-3A cells, whereas cell proliferation was inhibited when Spink3 was interfered. Furthermore, quantitative reverse transcription polymerase chain reaction and western blot results revealed that three signaling pathways, including extracellular-signal-regulated kinase 1/2 (ERK1/2), Janus kinase (JAK)-signal transducer and activator of transcription and phosphatidylinositol-3-kinase (PI3K)-protein kinase B (AKT), as well as their related genes, were altered following endogenous Spink3 addition/interference. Also, the PI3K-AKT and SRC-p38 pathways and their related genes were modified following exogenous SPINK3 treatment. Among them, the common signaling pathway was PI3K-AKT pathway. We concluded that SPINK3 could activate the PI3K-AKT pathway by enhancing the expression of AKT1 to regulate the proliferation of BRL-3A cells. This study may contribute to shedding light on the potential mechanisms of SPINK3 that regulate the proliferation of BRL-3A cells.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读