例如:"lncRNA", "apoptosis", "WRKY"

Structural Bases of Atypical Whisker Responses in a Mouse Model of CDKL5 Deficiency Disorder.

Neuroscience. 2020 Oct 01;445:130-143. Epub 2019 Aug 28
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Mutations in the CDKL5 (cyclin-dependent kinase-like 5) gene cause CDKL5 Deficiency Disorder (CDD), a severe neurodevelopmental syndrome where patients exhibit early-onset seizures, intellectual disability, stereotypies, limited or absent speech, autism-like symptoms and sensory impairments. Mounting evidences indicate that disrupted sensory perception and processing represent core signs also in mouse models of CDD; however we have very limited knowledge on their underlying causes. In this study, we investigated how CDKL5 deficiency affects synaptic organization and experience-dependent plasticity in the thalamo-cortical (TC) pathway carrying whisker-related tactile information to the barrel cortex (BC). By using synapse-specific antibodies and confocal microscopy, we found that Cdkl5-KO mice display a lower density of TC synapses in the BC that was paralleled by a reduction of cortico-cortical (CC) connections compared to wild-type mice. These synaptic defects were accompanied by reduced BC activation, as shown by a robust decrease of c-fos immunostaining, and atypical behavioral responses to whisker-mediated tactile stimulation. Notably, a 2-day paradigm of enriched whisker stimulation rescued both number and configuration of excitatory synapses in Cdkl5-KO mice, restored cortical activity and normalized behavioral responses to wild-type mice levels. Our findings disclose a novel and unsuspected role of CDKL5 in controlling the organization and experience-induced modifications of excitatory connections in the BC and indicate how mutations of CDKL5 produce failures in higher-order processing of somatosensory stimuli. This article is part of a Special Issue entitled: Animal Models of Neurodevelopmental Disorders.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读