例如:"lncRNA", "apoptosis", "WRKY"

Environmental chemicals differentially affect epigenetic-related mechanisms in the zebrafish liver (ZF-L) cell line and in zebrafish embryos.

Aquat. Toxicol.2019 Oct;215:105272. Epub 2019 Aug 14
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


A number of chemicals have been shown to affect epigenetic patterning and functions. Since epigenetic mechanisms regulate transcriptional networks, epigenetic changes induced by chemical exposure can represent early molecular events for long-term adverse physiological effects. Epigenetics has thus appeared as a research field of major interest within (eco)toxicological sciences. The present study aimed at measuring effects on epigenetic-related mechanisms of selected environmental chemicals (bisphenols, perfluorinated chemicals, methoxychlor, permethrin, vinclozolin and coumarin 47) in zebrafish embryos and liver cells (ZFL). Transcription of genes related to DNA methylation and histone modifications was measured and global DNA methylation was assessed in ZFL cells using the LUMA assay. The differences in results gathered from both models suggest that chemicals affect different mechanisms related to epigenetics in embryos and cells. In zebrafish embryos, exposure to bisphenol A, coumarin 47, methoxychlor and permethrin lead to significant transcriptional changes in epigenetic factors suggesting that they can impact early epigenome reprogramming related to embryonic development. In ZFL cells, significant transcriptional changes were observed upon exposure to all chemicals but coumarin 47; however, only perfluorooctane sulfonate induced significant effects on global DNA methylation. Notably, in contrast to the other tested chemicals, perfluorooctane sulfonate affected only the expression of the histone demethylase kdm5ba. In addition, kdm5ba appeared as a sensitive gene in zebrafish embryos as well. Taken together, the present results suggest a role for kdm5ba in regulating epigenetic patterns in response to chemical exposure, even though mechanisms remain unclear. To confirm these findings, further evidence is required regarding changes in site-specific histone marks and DNA methylation together with their long-term effects on physiological outcomes.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读