例如:"lncRNA", "apoptosis", "WRKY"

CTRP3 Protects against High Glucose-Induced Cell Injury in Human Umbilical Vein Endothelial Cells.

Anal Cell Pathol (Amst). 2019 Jul 24;2019:7405602. doi:10.1155/2019/7405602. eCollection 2019
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


AIMS:Inflammation was closely associated with diabetes-related endothelial dysfunction. C1q/tumor necrosis factor-related protein 3 (CTRP3) is a member of the CTRP family and can provide cardioprotection in many cardiovascular diseases via suppressing the production of inflammatory factors. However, the role of CTRP3 in high glucose- (HG-) related endothelial dysfunction remains unclear. This study evaluates the effects of CTRP3 on HG-induced cell inflammation and apoptosis. MATERIALS AND METHODS:To prevent high glucose-induced cell injury, human umbilical vein endothelial cells (HUVECs) were pretreated with recombinant CTRP3 for 1 hour followed by normal glucose (5.5 mmol/l) or high glucose (33 mmol/l) treatment. After that, cell apoptosis and inflammatory factors were determined. RESULTS:Our results demonstrated that CTRP3 mRNA and protein expression were significantly decreased after HG exposure in HUVECs. Recombinant human CTRP3 inhibited HG-induced accumulation of inflammatory factors and cell loss in HUVECs. CTRP3 treatment also increased the phosphorylation levels of protein kinase B (AKT/PKB) and the mammalian target of rapamycin (mTOR) in HUVECs. CTRP3 lost its inhibitory effects on HG-induced cell inflammation and apoptosis after AKT inhibition. Knockdown of endogenous CTRP3 in HUVECs resulted in increased inflammation and decreased cell viability in vitro. CONCLUSIONS:Taken together, these findings indicated that CTRP3 treatment blocked the accumulation of inflammatory factors and cell loss in HUVECs after HG exposure through the activation of AKT-mTOR signaling pathway. Thus, CTRP3 may be a potential therapeutic drug for the prevention of diabetes-related endothelial dysfunction.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读