例如:"lncRNA", "apoptosis", "WRKY"

The emerging contaminant 3,3'-dichlorobiphenyl (PCB-11) impedes Ahr activation and Cyp1a activity to modify embryotoxicity of Ahr ligands in the zebrafish embryo model (Danio rerio).

Environ Pollut. 2019 Nov;254(Pt A):113027. Epub 2019 Aug 06
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


3,3'-dichlorobiphenyl (PCB-11) is an emerging PCB congener widely detected in environmental samples and human serum, but its toxicity potential is poorly understood. We assessed the effects of three concentrations of PCB-11 on embryotoxicity and Aryl hydrocarbon receptor (Ahr) pathway interactions in zebrafish embryos (Danio rerio). Wildtype AB or transgenic Tg(gut:GFP) strain zebrafish embryos were exposed to static concentrations of PCB-11 (0, 0.2, 2, or 20 μM) from 24 to 96 h post fertilization (hpf), and gross morphology, (Cyp1a) activity, and liver development were assessed via microscopy. Ahr interactions were probed via co-exposures with PCB-126 or beta-naphthoflavone (BNF). Embryos exposed to 20 μM PCB-11 were also collected for PCB-11 body burden, qRT-PCR, RNAseq, and histology. Zebrafish exposed to 20 μM PCB-11 absorbed 0.18% PCB-11 per embryo at 28 hpf and 0.61% by 96 hpf, and their media retained 1.36% PCB-11 at 28 hpf and 0.84% at 96 hpf. This concentration did not affect gross morphology, but altered the transcription of xenobiotic metabolism and liver development genes, impeded liver development, and increased hepatocyte vacuole formation. In co-exposures, 20 μM PCB-11 prevented deformities caused by PCB-126 but exacerbated deformities in co-exposures with BNF. This study suggests that PCB-11 can affect liver development, act as a partial agonist/antagonist of the Ahr pathway, and act as an antagonist of Cyp1a activity to modify the toxicity of compounds that interact with the Ahr pathway.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读