例如:"lncRNA", "apoptosis", "WRKY"

Ambient fine particulate matter inhibits 15-lipoxygenases to promote lung carcinogenesis.

J. Exp. Clin. Cancer Res.2019 Aug 16;38(1):359
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Epidemiological observations have demonstrated that ambient fine particulate matter with dp < 2.5 μm (PM2.5) as the major factor responsible for the increasing incidence of lung cancer in never-smokers. However, there are very limited experimental data to support the association of PM2.5 with lung carcinogenesis and to compare PM2.5 with smoking carcinogens. METHODS:To study whether PM2.5 can contribute to lung tumorigenesis in a way similar to smoking carcinogen 4-methylnitrosamino-l-3-pyridyl-butanone (NNK) via 15-lipoxygenases (15-LOXs) reduction, normal lung epithelial cells and cancer cells were treated with NNK or PM2.5 and then epigenetically and post-translationally examined the cellular and molecular profiles of the cells. The data were verified in lung cancer samples and a mouse lung tumor model. RESULTS:We found that similar to smoking carcinogen NNK, PM2.5 significantly enhanced cell proliferation, migration and invasion, but reduced the levels of 15-lipoxygenases-1 (15-LOX1) and 15-lipoxygenases-2 (15-LOX2), both of which were also obviously decreased in lung cancer tissues. 15-LOX1/15-LOX2 overexpression inhibited the oncogenic cell functions induced by PM2.5/NNK. The tumor formation and growth were significantly higher/faster in mice implanted with PM2.5- or NNK-treated NCI-H23 cells, accompanied with a reduction of 15-LOX1/15-LOX2. Moreover, 15-LOX1 expression was epigenetically regulated at methylation level by PM2.5/NNK, while both 15-LOX1 and 15-LOX2 could be significantly inhibited by a set of PM2.5/NNK-mediated microRNAs. CONCLUSION:Collectively, PM2.5 can function as the smoking carcinogen NNK to induce lung tumorigenesis by inhibiting 15-LOX1/15-LOX2.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读