例如:"lncRNA", "apoptosis", "WRKY"

TMEM16F inhibition limits pain-associated behavior and improves motor function by promoting microglia M2 polarization in mice.

Biochem. Biophys. Res. Commun.2019 Oct 01;517(4):603-610. Epub 2019 Aug 10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Spinal cord injury (SCI) leads to sensorimotor deficits and autonomic changes. Macrophages and microglia could be polarized into the classically activated pro-inflammatory M1 phenotype or the alternatively activated anti-inflammatory M2 phenotype. Transmembrane protein with unknown function 16F (TMEM16F) exhibits functional diversity and may contribute to microglial function. However, the effects of TMEM16F on the modulation of macrophage/microglial polarization are still not fully understood. In the study, TMEM16F up-regulation was detected after SCI in mice, and TMEM16F protein was found in macrophages/microglia in injured spinal cord sections. Depletion of TMEM16F improved motor function in male mice with SCI. M1-type macrophages/microglia accumulated in lower numbers in the injured spinal cord of TMEM16F-knockout (KO) mice. M2 polarization inhibited by SCI was improved in mice with TMEM16F deficiency. TMEM16F deletion also attenuated microglial/macrophage pro-inflammatory response. Furthermore, significant down-regulation of A disintegrin and metalloprotease 17 (ADAM17) was observed in TMEM16F-KO mice. Importantly, TMEM16F-promoted M1 polarization and -inhibited M1 polarization were largely associated with the suppression of ADAM17. Overall, our findings provided new insights into the regulatory mechanisms of macrophage/microglial polarization, thereby possibly facilitating the development of new therapeutic strategies for SCI through the regulation of TMEM16F/ADAM17 signaling.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读