例如:"lncRNA", "apoptosis", "WRKY"

Group 1 innate lymphoid cells are involved in the progression of experimental anti-glomerular basement membrane glomerulonephritis and are regulated by peroxisome proliferator-activated receptor α.

Kidney Int.2019 Oct;96(4):942-956. Epub 2019 May 22
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Innate lymphoid cells play an important role in the early effector cytokine-mediated response. In Wistar Kyoto rats, CD8+ non-T lymphocytes (CD8+Lym) infiltrate into glomeruli during the development of anti-glomerular basement membrane (anti-GBM) glomerulonephritis. Here, we examined the profiles and roles of CD8+Lym in anti-GBM glomerulonephritis. The regulation of CD8+Lym by peroxisome proliferator-activated receptor (PPAR)-α in anti-GBM glomerulonephritis was also evaluated. Glomerular infiltrating CD8+Lym were lineage-negative cells that showed markedly high expression of IFN-γ and T-bet mRNAs but not Eomes, indicating these cells are group 1 innate lymphoid cells. In anti-GBM glomerulonephritis, the glomerular mRNAs of innate lymphoid cell-related cytokines (IFN-γ and TNF-α) and chemokines (CXCL9, CXCL10, and CXCL11) are significantly increased. Treatment with a PPARα agonist ameliorated renal injury, with reduced expression of these mRNAs. In vitro, enhanced IFN-γ production from innate lymphoid cells upon IL-12 and IL-18 stimulation was reduced by the PPARα agonist. Moreover, CXCL9 mRNA in glomerular endothelial cells and CXCL9, CXCL10, and CXCL11 mRNAs in podocytes and macrophages were upregulated by IFN-γ, whereas the PPARα agonist downregulated their expression. We also detected the infiltration of innate lymphoid cells into glomeruli in human anti-GBM glomerulonephritis. Thus, innate lymphoid cells are involved in the progression of anti-GBM glomerulonephritis and regulated directly or indirectly by PPARα. Our findings suggest that innate lymphoid cells could serve as novel therapeutic targets for anti-GBM glomerulonephritis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读