例如:"lncRNA", "apoptosis", "WRKY"

miR-142-3p Regulates Milk Synthesis and Structure of Murine Mammary Glands via PRLR-Mediated Multiple Signaling Pathways.

J. Agric. Food Chem.2019 Aug 28;67(34):9532-9542. doi:10.1021/acs.jafc.9b03734. Epub 2019 Aug 16
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Murine mammary gland is an ideal model for studying the development and milk synthesis in dairy animals. MicroRNAs play an important role in milk synthesis and mammary gland development; however, the molecular mechanism of miR-142-3p continues to be poorly understood. Here, we knocked down miR-142-3p expression in vitro and vivo, increased the prolactin receptor expression and activated many downstream cellular proteins, such as mammalian target of rapamycin, sterol regulatory element-binding transcription factor 1, cyclin D1, and signal transducer and activator of transcription 5. Additionally, miR-142-3p knockdown in mouse mammary gland epithelial cells increased proliferation but not viability, induced cell cycle progression, decreased apoptosis, and increased the expression of triglycerides and β-casein. Moreover, miR-142-3p knockdown in murine mammary gland tissue in vivo affected the structure and function of the mammary gland, which showed an increased number of lobules and ducts and was more capable of producing milk. However, overexpression of miR-142-3p had the opposite effects. In summary, these data reveal that miR-142-3p regulates milk synthesis and the structure of murine mammary glands via PRLR-mediated multiple signaling pathways.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读